
Problem Sheet 2, v2

1. i) Draw the graphs for [x] and {x}.

ii) Show that for α ∈ R,

∫ α+1

α

[t] dt = α and

∫ α+1

α

{t} dt = 1

2
.

Hint Split these integrals at the integer which must lie in any interval
of length 1, such as [α, α + 1] .

iii) Prove that for x > 1
∫ x

1

[t] dt =
1

2
[x] ([x]− 1) + {x} [x]

=
1

2
x (x− 1) +

1

2
{x} (1− {x}) .

This is often written as
∫ x

1

[t] dt =
1

2
x (x− 1) +O(1) ,

though the error term is zero when x ∈ Z. The result will be used in
the course in the form

∫ x

1

[t] dt =
1

2
x2 +O(x) ,

(where the error is not now zero when x is an integer.)

2. How fast does the logarithm grow?.

i) Recall the fundamental idea from Chapter 1,

(

inf
t∈[y,x]

f(t)

)

(x− y) ≤
∫ x

y

f(t) dt ≤
(

sup
t∈[y,x]

f(t)

)

(x− y) . (27)

Use (27) to show that, for all real y > 1,

log y < y − 1 < y.
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ii) By an appropriate choice of y in part i show that for all n ≥ 1 we
have

log x < nx1/n (28)

for x > 1.

iii) Deduce that for all ε > 0, we have log x ≪ε x
ε. This means that

the logarithm of x grows slower than any power of x.

Here log x≪ε x
ε means there exists a constant C(ε) , depending on ε,

for which log x ≤ C(ε) xε for all x ≥ 1.

iv) In the notes we make use of both of

x1/3 log x < Cx1/2 and xδ < C
x

logℓ x
,

for any constant C > 0, δ < 1 and ℓ ≥ 1. Prove these inequalities both
hold for sufficiently large x.

3. A technical result used in more advanced results on the Prime Number
Theorem.

For a function whose growth is

• faster than xδ for any δ < 1 yet

• slower than x/ logℓ x for any ℓ ≥ 1,

consider
x exp (−C (log x)α)

with constants C > 0 and α > 0.

Prove that

a) If δ < 1 then for any C > 0

xδ ≤ x exp (−C (log x)α)

for all sufficiently large x as long as α < 1.

b) If ℓ ≥ 1 then for any C > 0

x exp (−C (log x)α) ≤ x

logℓ x

for all sufficiently large x as long as α > 0.
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4. i) Estimates of integrals found in error terms. Show that for α ≥ 0 and
ℓ ≥ 1 we have.

∫ x

2

tα

logℓ t
dt≪ℓ,α

x1+α

logℓ x
.

Hint Split the integral at
√
x and use the fact that log t is an increasing

function of t.

ii) Show that for α > 1 and ℓ ≥ 1 we have

∫ ∞

x

logℓ t

tα
dt≪ℓ,α

logℓ x

xα−1
.

Hint Split the integral at x2 and use (27). In the shorter interval again
use that log t is an increasing function while in the longer interval use
log t≪ tε with some appropriately chosen ε.

iii) A result used in more advanced results on the Prime Number The-
orem. Show that with α > 0 and C > 0 we have

∫ x

2

exp (−C (log t)α) dt≪ x exp (−C ′ (log x)α) ,

for some C ′ > 0.
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Problem Sheet 2: Generalising Euler’s constant.

Recall from lectures that a result for comparing sums with integrals
is that if f has a continuous derivative, is non-negative and monotonic
then

∑

1≤n≤x

f(n) =

∫ x

1

f(t) dt+O(max (f(1), f(x))) , (29)

for all real x ≥ 1.

In fact we deduced (29) from the Euler Summation: Let f have a
continuous derivative x > 0. Then

∑

1≤n≤x

f(n) =

∫ x

1

f(t) dt+ f(1)− {x} f(x) +
∫ x

1

{t} f ′(t) dt

for all real x ≥ 1.

As an application of (29) we showed that there exists a constant γ such
that

∑

1≤n≤x

1

n
= log x+ γ +O

(

1

x

)

, (30)

for x ≥ 1. The essential idea here is that we come across a convergent
integral

∫ x

1

{t}
t2
dt.

This could simply be bounded as O(1), but for a better result it is
completed to infinity and the tail end, the integral from x to ∞, is
bounded (often using the results of Question 4). This is a standard
method and is used in the following question in which we generalise
(30) to a sum of (log n)ℓ/n for any integer ℓ ≥ 1. The result of Question
5 is used later when examining the Laurent Expansion of ζ(s) .

5. Prove that for all ℓ ≥ 1 there exists a constant Cℓ such that

∑

n≤x

logℓ n

n
=

1

ℓ+1
logℓ+1 x+ Cℓ +O

(

logℓ x

x

)

,

for all real x ≥ 1.

The result when ℓ = 0 has C0 = γ, Euler’s constant. Notice how we
have the best possible error term.
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Problem Sheet 2: More Sums of logs.

6. Generalise a result in lectures written (in a weakened form) as

∑

1≤n≤x

log n = x log x+O(x)

i) With integer ℓ ≥ 1 justify

∑

1≤n≤x

logℓ n =

∫ x

1

logℓ tdt+O
(

logℓ x
)

(31)

for all real x ≥ 1.

ii) Prove that

∫ x

1

logℓ tdt = x logℓ x+Oℓ

(

x logℓ−1 x
)

.

Deduce
∑

1≤n≤x

logℓ n = x logℓ x+Oℓ

(

x logℓ−1 x
)

.

for all real x ≥ 1.

Note the best error term here would be O
(

logℓ x
)

, far smaller than the
one here.

7. Improve the result of Qu 6 to the best possible error term.

Change the variable of integration in (31) to u = log t so

∫ x

1

logℓ tdt =

∫ log x

0

euuℓdu

i) Prove by induction that

∫ y

0

euuddu = ey
d
∑

r=0

(−1)r d!

(d− r)!
yd−r − (−1)d d! (32)

for all d ≥ 0.
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ii) Prove that for any integer ℓ ≥ 0 we have

∑

n≤x

logℓ n = xPℓ (log x) +O
(

logℓ x
)

,

where

Pd (y) =
d
∑

r=0

(−1)r d!

(d−r)!y
d−r,

a polynomial of degree d.

Problem Sheet 2: Partial Summation

Partial Summation is often no more than an exercise in interchanging
Sums and Integrals.

8. Let x ≥ 1 be real, {an}n≥1 a sequence of complex numbers and A(x) =
∑

1≤n≤x an.

a) Show that
∑

1≤n≤x

an (x− n) =

∫ x

1

A(t) dt.

b) Show that

∑

1≤n≤x

an log
x

n
=

∫ x

1

A(t)

t
dt =

∫ log x

0

A(ey) dy.

c) Show that

∑

1≤n≤x

an (e
x − en) =

∫ x

1

etA(t) dt =

∫ ex

e

A(log y) dy.

Hint Write x−n, log (x/n) and ex−en as integrals.

9. The last question concerned sums over n ≤ x, this question will be for
sums over n > x.

For f with a continuous derivative for x > 0 satisfying f (x) → 0 as
x→∞ and

∫∞

1
|f ′(t)| dt <∞, then
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∑

n>x

anf(n) = −A(x) f(x)−
∫ ∞

x

A(t) f ′(t) dt.

for sequences {an} for which the sum and integral converge.

Hint Write f (n) as an integral from n to ∞.

10. a) Use Partial Summation to prove that if f has a continuous derivative
on [1, x] then for a sum over primes we have

∑

p≤x

f(p) = −
∫ x

2

π(t) f ′(t) dt+ π(x) f(x) . (33)

b) Recalling that θ(x) =
∑

p≤x log p, deduce that

θ(x) = π(x) log x+O

(

x

log x

)

.

Compare this with Theorem 2.20.

Hint for b. You may have to use Chebyshev’s bound π(x) = O(x/ log x)
in the integral that arises along with Question 4

Problem Sheet 2: Deductions from Merten’s Theorem.

11. Prove that
∑

2≤n≤x

1

n log n
= log log x+O(1) .

12. On the previous Problem Sheet you were asked to show that

∞
∑

n=2

1

n (log n)1+α (34)

converges for all α > 0.

Question 11 could be compared with Merten’s result

∑

p≤x

1

p
= log log x+O(1) .
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This may lead you to think that the n-th prime is “of size” n log n,
which we might write as pn ≈ n log n. In which case log pn may be
thought of as of size

log pn ≈ log(n log n) = log n+ log log n ≈ log n.

Thus pn(log pn)
α would be “approximately” of the size

pn(log pn)
α ≈ (n log n)(log n)α = n(log n)1+α.

Hence the convergence of (34) might then suggest that the sum over
primes

∑

p

1

p (log p)α
.

converges for all α > 0. Prove that this is so.

Hint Use Partial Summation to remove the 1/ (log p)α so you can
apply Merten’s Theorem, Theorem 2.22, and in particular (18) .

13. Prove that for a fixed c > 1,

∑

x<n≤cx

Λ(n)

n
≪ 1,

i.e. this sum is bounded for all x > 1.

(What is more difficult, and thus of more interest, is to show that this
sum is bounded below and thus non-zero. For this would then show
the existence of n ∈ [x, cx] for which Λ(n) 6= 0. This n would be a
power of a prime, and since powers greater or equal to 2 are rare, this
would lead to the existence of a prime in [x, cx] for any c > 1.)

Hint Use Merten’s result (16) (twice).

14. Prove that
∫ x

1

ψ(u)

u2
du = log x+O(1) .

Hint Interchange the integral and the summation within the definition
of ψ, use Merten’s Theorem and Chebyshev’s bound ψ(x)≪ x.
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15. Prove that for a fixed constant c > 1,

∫ x

1

ψ(cu)− ψ(u)

u2
du = (c−1) log x+Oc(1) .

Note, Since for sufficiently large x the right hand side is greater than
0 we must have that the integrand is non-zero, thus ψ(cu)− ψ(u) > 0,
and in particular, there is a prime in [u, cu], for some values of u.
Unfortunately this does not tell us for which u these intervals contain
a prime (it is, in fact, for all u sufficiently large) and how many primes
are in these intervals.

Problem Sheet 2: Prime Number Theorem

16. (Tricky) Assume the Prime Number Theorem in the form π(x) ∼
x/ log x as x→∞. Prove that the n-th prime pn satisfies

pn ∼ n log n

as n→∞, i.e.

lim
n→∞

pn
n log n

= 1.

Hint Note that π(pn) = n, apply the Prime Number Theorem in the
form given in the question and take logarithms.

The question justifies the assumption in Question 12.
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