Problem Sheet 2,

i) Draw the graphs for [z] and {z}.

ii) Show that for a € R,

atl a+l
/ [t]dt = « and / {t}dt = =

Hint Split these integrals at the integer which must lie in any interval
of length 1, such as [, a 4 1].

iii) Prove that for z > 1

[[t]dt _

[2] ([2] = 1) + {w} [2]

N = N

1
v (o= 1)+ 5 o} (1 {a}).
This is often written as

/lx[t]dt—;x(:c—l)jLO(l),

though the error term is zero when x € Z. The result will be used in
the course in the form

* 1
/ (] dt = 22 + O(x),
1 2
(where the error is not now zero when z is an integer.)

2. How fast does the logarithm grow?.

i) Recall the fundamental idea from Chapter 1,

<téﬁfx]f( ) / fle)dt < (;EI; f(t )) (z—y). (27)

Use (27) to show that, for all real y > 1,

logy <y—1<uy.
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ii) By an appropriate choice of y in part i show that for all n > 1 we
have
logz < na'/m (28)

for x > 1.

iii) Deduce that for all € > 0, we have logx <. x°. This means that
the logarithm of x grows slower than any power of =x.

Here log x <. 2° means there exists a constant C(e), depending on &,
for which logz < C(e) 2° for all x > 1.

iv) In the notes we make use of both of

X

loge z’

tYBlogx < Cx'/? and 2% < C

for any constant C' > 0, § < 1 and £ > 1. Prove these inequalities both
hold for sufficiently large x.

. A technical result used in more advanced results on the Prime Number
Theorem.

For a function whose growth is

e faster than 2° for any § < 1 yet

e slower than z/log’ = for any ¢ > 1,

consider
zexp (—C (logx)®)

with constants C' > 0 and o > 0.
Prove that
a) If § < 1 then for any C' > 0
2° < xexp (—C (logx)%)
for all sufficiently large x as long as a < 1.

b) If ¢ > 1 then for any C' > 0

T

log

zexp (—C (logx)") <

for all sufficiently large x as long as a > 0.
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4. 1) Estimates of integrals found in error terms. Show that for & > 0 and
¢ > 1 we have.

Hint Split the integral at /= and use the fact that log ¢ is an increasing
function of t.

ii) Show that for & > 1 and ¢ > 1 we have

< Jogtt log*
/ 8!y, 08T
€T 'ZEOC?

1o 1°

Hint Split the integral at x? and use (27). In the shorter interval again
use that logt is an increasing function while in the longer interval use
logt < t® with some appropriately chosen €.

iii) A result used in more advanced results on the Prime Number The-
orem. Show that with o > 0 and C' > 0 we have

/ exp (—C' (logt)") dt < zexp (—C' (logz)”),
2

for some C" > 0.
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Problem Sheet 2: Generalising Euler’s constant.

Recall from lectures that a result for comparing sums with integrals
is that if f has a continuous derivative, is non-negative and monotonic
then

S fn) = / () dt+ Olmax (F(1), (@), (29)

1<n<z
for all real x > 1.

In fact we deduced (29) from the Euler Summation: Let f have a
continuous derivative z > 0. Then

> s = [ f0d+ 1)~ o} S+ [ (0} £ a

for all real x > 1.

As an application of (29) we showed that there exists a constant v such

that . )
Z :logx+7+0<>, (30)
n x

1<n<zx

for x > 1. The essential idea here is that we come across a convergent
integral i
Wy,
P

This could simply be bounded as O(1), but for a better result it is
completed to infinity and the tail end, the integral from z to oo, is
bounded (often using the results of Question 4). This is a standard
method and is used in the following question in which we generalise
(30) to a sum of (logn)*/n for any integer £ > 1. The result of Question
5 is used later when examining the Laurent Expansion of ((s).

. Prove that for all £ > 1 there exists a constant C, such that

L 4
SR Lo #2),

n :f—i-l T

n<x
for all real x > 1.
The result when ¢ = 0 has Cy = v, Euler’s constant. Notice how we

have the best possible error term.
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Problem Sheet 2: More Sums of logs.

6. Generalise a result in lectures written (in a weakened form) as

Z logn = xlogx + O(x)

1<n<z

i) With integer ¢ > 1 justify

Z log‘n = / log” tdt + O(logz x) (31)
1<n<z 1

for all real z > 1.

ii) Prove that
/ log' tdt = xlog' x + Oy(zlog™ ' z) .
1

Deduce
Z log‘n = zlog’z + O, (x logt™? x) .

1<n<z
for all real z > 1.

Note the best error term here would be O(logé x), far smaller than the
one here.

7. Improve the result of Qu 6 to the best possible error term.

Change the variable of integration in (31) to u = logt so

T logz
/ log! tdt = / e“u’du
1 0

i) Prove by induction that

/y e“uldu = e¥ Z (-1)" (dilr)!yd_’" —(-1)*a (32)

0 r=0

for all d > 0.
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ii) Prove that for any integer ¢ > 0 we have

Z log'n = zP, (logz) + O (logé ),

n<x

where
d
d! d—r

Pi(y)=> (-1 i’

r=0

a polynomial of degree d.

Problem Sheet 2: Partial Summation

Partial Summation is often no more than an exercise in interchanging
Sums and Integrals.

. Let z > 1 bereal, {a,},-, asequence of complex numbers and A(z) =

Zlgngm Anp.-

a) Show that

S (o —n) z/le(t)dt.

1<n<z

b) Show that

¢) Show that

x

Z a, (" —e") = /190 e A(t) dt = /: A(logy) dy.

1<n<zx

Hint Write z—n, log (x/n) and e”—e™ as integrals.

. The last question concerned sums over n < x, this question will be for
sums over n > .

For f with a continuous derivative for z > 0 satisfying f (z) — 0 as
x — oo and [7|f(t)|dt < oo, then
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10.

11.

12.

> anf) = ~Aw) f(o) - [ T A@ @) dr.

n>x

for sequences {a,} for which the sum and integral converge.

Hint Write f (n) as an integral from n to oco.

a) Use Partial Summation to prove that if f has a continuous derivative
on [1, x] then for a sum over primes we have

x

S ) = - / w(t) £/(t) dt + n(x) f(z). (33)

p<z

b) Recalling that 0(z) = > _, logp, deduce that

O(z) = n(x)logz + O<lo§x> :
Compare this with Theorem 2.20.

Hint for b. You may have to use Chebyshev’s bound 7(z) = O(z/ log )
in the integral that arises along with Question 4

Problem Sheet 2: Deductions from Merten’s Theorem.

Prove that

St en

converges for all a > 0.

Question 11 could be compared with Merten’s result

Z; = loglogz + O(1).

p<z
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13.

14.

This may lead you to think that the n-th prime is “of size” nlogn,
which we might write as p, =~ nlogn. In which case logp, may be
thought of as of size

log p,, = log(nlogn) = logn + loglogn ~ logn.
Thus p,(log p,)* would be “approximately” of the size

pn(logpn)® = (nlogn)(logn)* = n(logn)' ™.

Hence the convergence of (34) might then suggest that the sum over

primes
Z 1
—~ p(logp)

converges for all & > 0. Prove that this is so.

Hint Use Partial Summation to remove the 1/ (logp)® so you can
apply Merten’s Theorem, Theorem 2.22; and in particular (18).

Prove that for a fixed ¢ > 1,

> et

r<n<cr
i.e. this sum is bounded for all 2 > 1.

(What is more difficult, and thus of more interest, is to show that this
sum is bounded below and thus non-zero. For this would then show
the existence of n € [z, cx] for which A(n) # 0. This n would be a
power of a prime, and since powers greater or equal to 2 are rare, this
would lead to the existence of a prime in [z, cz] for any ¢ > 1.)

Hint Use Merten’s result (16) (twice).

r

Hint Interchange the integral and the summation within the definition
of 1, use Merten’s Theorem and Chebyshev’s bound ¥(z) < x.

Prove that

wsg) du=logx +O(1).
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15.

16.

Prove that for a fixed constant ¢ > 1,

/z Wdu = (c—1)logz + O.(1).

Note, Since for sufficiently large x the right hand side is greater than
0 we must have that the integrand is non-zero, thus ¥ (cu) — ¥ (u) > 0,
and in particular, there is a prime in |u, cu|, for some values of w.
Unfortunately this does not tell us for which u these intervals contain
a prime (it is, in fact, for all u sufficiently large) and how many primes
are in these intervals.

Problem Sheet 2: Prime Number Theorem

(Tricky) Assume the Prime Number Theorem in the form 7(x) ~
x/logx as x — oo. Prove that the n-th prime p, satisfies

Pp ~ nlogn

as n — oo, i.e.

lim Pr

=1
n—oo nlogn

Hint Note that 7(p,) = n, apply the Prime Number Theorem in the
form given in the question and take logarithms.

The question justifies the assumption in Question 12.
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